Lesson 11.2 Area of a Circle

Find the area of each circle. Use 3.14 as an approximation for π .

1.

2.

Find the area of each semicircle. Use $\frac{22}{7}$ as an approximation for π .

3.

4.

Find the area of each quadrant to the nearest tenth. Use 3.14 as an approximation for $\pi.\,$

5.

58

6

Solve. Show your work. Use $\frac{22}{7}$ as an approximation for π .

7. A park is in the shape of a semicircle. Find the area of the park.

8. The shape of a soap dish is a semicircle. Find the area of the soap dish.

- **9.** A 6-inch pizza costs \$3.50. A 12-inch pizza costs \$11.
 - a) How much less is the area of the 6-inch pizza than the area of the 12-inch pizza? Express your answer to the nearest hundredth.

b) Which is the better deal? Explain your reasoning.

10. The figure shows a circular fishpond enclosed within a semicircular flowerbed. The diameter of the pond, \overline{PQ} , is 42 inches. Find the area of the shaded region.

11. The figure is made up of two identical quadrants and a square. Find the area of the shaded region.

Solve. Show your work. Use 3.14 as an approximation for π .

12. The figure is made up of a semicircle and two identical quadrants. Point *A* is the center of the semicircle. Find the area of the figure.

13. The figure is made up of a semicircle in a quadrant. Find the area of the shaded region.

14. The figure shows a circle and four identical semicircles inside it. Point C is the center of the circle and \overline{AE} is the diameter. If AE = 48 centimeters, find the area of the shaded region.

15. The figure shows two circles. Points A and B are the centers of the circles. The area of the shaded region is $\frac{2}{7}$ the area of the smaller circle. Find the total area of the unshaded region of the figure.

61

- **4.** Length of the semicircular arc $\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 1.54 = 2.42$ in. Distance around the semicircle
 - = 2.42 + 0.77 + 0.77 = 3.96 inches
- 5. Length of the arc
 - $\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 10$
 - = 15.7 cm
 - Distance around the quadrant
 - = 15.7 + 10 + 10
 - = 35.7 centimeters
- 6. Length of the arc
 - $\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 21.4$
 - = 33.598 ft
 - Distance around the quadrant
 - = 33.598 + 21.4 + 21.4
 - = 76.398 feet
- 7. $2 \cdot \frac{22}{7} \cdot 1.9 = 11.94$ feet
- **8.** $\frac{22}{7} \cdot 25 = 78.57$ inches
- **9.** $\frac{22}{7} \cdot 18 = 56.57$ millimeters
- **10.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 25 = 39.29$ in.
 - Distance around the semicircle
 - = 39.29 + 25
 - = 64.29 inches
- **11.** $\frac{1}{4} \cdot 2 \cdot \frac{22}{7} \cdot 11 = 17.29 \text{ cm}$
 - Distance around the quadrant
 - = 17.29 + 11 + 11
 - = 39.29 centimeters
- **12.** $\frac{3}{4}$ of the circle
 - $\approx \frac{3}{4} \cdot 2 \cdot 3.14 \cdot 18$
 - = 84.78 cm
 - Distance around the figure
 - = 84.78 + 18 + 18
 - = 120.78 centimeters
- 13. Length of the arcs of the 4 quadrants
 - ≈ 2 · 3.14 · 15
 - = 94.2 in.
 - Distance around the figure
 - = 94.2 + 15 + 15
 - = 124.2 inches
- 14. Length of semicircular arc

$$\approx \frac{1}{2} \cdot 3.14 \cdot 18 = 28.26 \text{ yd}$$

- Distance around the shaded region
- $= 28.26 + 18 \cdot 3$
- = 82.26 yards

15. Length of the arc of the quadrant

$$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 20 = 31.4 \text{ cm}$$

Distance around the shaded region

$$= 31.4 + 20 + 20$$

- = 71.4 centimeters
- 16. Length of the 2 semicircular arcs

$$\approx \frac{22}{7} \cdot 7 = 22$$
 in.

- Distance around the shaded region = 22 + 12 + 12 = 46 inches
- **17.** Length of the small semicircular arc

$$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 140 = 220 \text{ cm}$$

Length of the big semicircular arc

$$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot (140 + 35 + 35) = 330 \text{ cm}$$

Distance around the shaded region

$$= 220 + 330 + 35 + 35$$

- = 620 centimeters
- 18. Length of the arc of the 2 quadrants

$$\approx \frac{1}{2} \cdot 2 \cdot \frac{22}{7} \cdot 7 = 22 \text{ cm}$$

Distance around the figure

$$= 22 + 7 + 7 + 2 + 2$$

= 40 centimeters

Lesson 11.2

- **1.** 3.14 · 20 · 20
 - = 1,256 square centimeters
- **2.** 3.14 · 4 · 4
 - = 50.24 square miles

3.
$$\frac{1}{2} \cdot \frac{22}{7} \cdot 17.5 \cdot 17.5$$

= 481.25 square feet

4.
$$\frac{1}{2} \cdot \frac{22}{7} \cdot 56 \cdot 56$$

= 4,928 square meters

5.
$$\frac{1}{4} \cdot 3.14 \cdot 3.5 \cdot 3.5$$

≈ 9.6 square inches

6.
$$\frac{1}{4} \cdot 3.14 \cdot 14 \cdot 14$$

≈ 153.9 square yards

7.
$$\frac{1}{2} \cdot \frac{22}{7} \cdot 20 \cdot 20$$

- ≈ 628.57 square meters
- **8.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 7 \cdot 7 = 77$ square centimeters

Marshall Cavendish International (Singapore) Private Limited.

9. a) Area of 6-inch pizza:

$$\frac{22}{7} \cdot 3 \cdot 3 \approx 28.29$$

Area of 12-inch pizza:

$$\frac{22}{7} \cdot 6 \cdot 6 \approx 113.14$$

$$113.14 - 28.29$$

- = 84.85 square inches
- The area of the 6-inch pizza is 84.85 square inches less than
- the area of the 12-inch pizza.
- **b)** Cost of 6-inch pizza per square inch: $$3.5 \div 28.29 \approx 0.12
 - Cost of 12-inch pizza per square inch:
 - \$11 ÷ 113.14 ≈ \$0.10
 - The 12-inch pizza is a better deal because it costs less per square inch than the 6-inch pizza.
- 10. Area of the semicircular flowerbed

$$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 42 \cdot 42 = 2,772 \text{ in.}^2$$

Area of the circular fishpond

$$\approx \frac{22}{7} \cdot 21 \cdot 21 = 1,386 \text{ in.}^2$$

- Area of flowerbed without the pond
- ≈ 2,772 **-** 1,386
- = 1,386 square inches
- 11. Area of the shaded region
 - $= 21 \cdot 21 = 441$ square inches
- Area of the quadrant

$$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot 21 \cdot 21 = 346.5 \text{ in.}^2$$
Area of shaded region in the square

$$\approx 21 \cdot 21 - \frac{1}{4} \cdot \frac{22}{7} \cdot 21 \cdot 21$$

= 94.5 in.²

$$= 94.5 \text{ in.}^2$$

Total area of the shaded regions

$$= 346.5 + 94.5 = 441$$
 square inches

- **12.** Radius = $45 \div 3 = 15$ cm
 - Area of the figure
 - ≈ 3.14 · 15 · 15
 - = 706.5 square centimeters
- 13. Area of the quadrant

$$\approx \frac{1}{4} \cdot 3.14 \cdot 18 \cdot 18$$

$$= 254.34 \text{ in.}^2$$

Area of the semicircle

$$\approx \frac{1}{2} \cdot 3.14 \cdot 9 \cdot 9$$

- $= 127.17 \text{ in.}^2$
- Area of the shaded region
- = 254.34 127.17
- = 127.17 square inches

- 14. Radius of the circle
 - $= 48 \div 2 = 24 \text{ cm}$
 - Area of the circle
 - $\approx 3.14 \cdot 24 \cdot 24$
 - $= 1,808.64 \text{ cm}^2$
 - Radius of each semicircle
 - $= 48 \div 4 \div 2 = 6 \text{ cm}$
 - Total area of the 4 semicircles
 - = area of 2 circles
 - $\approx 2 \cdot (3.14 \cdot 6 \cdot 6)$
 - $= 226.08 \text{ cm}^2$
 - Area of the shaded region
 - $= 1,808.64 226.08 \text{ cm}^2$
 - = 1,582.56 square centimeters
- 15. Area of the bigger circle
 - $\approx 3.14 \cdot 10 \cdot 10 = 314 \text{ cm}^2$
 - Area of the smaller circle
 - $\approx 3.14 \cdot 7 \cdot 7 = 153.86 \text{ cm}^2$
 - Area of the shaded region

$$=\frac{2}{7} \cdot 153.86 = 43.96 \text{ cm}^2$$

- Area of the unshaded region
- $= 314 + 153.86 2 \cdot 43.96 \text{ cm}^2$
- = 379.94 square centimeters

Lesson 11.3

- 1. Area
 - ≈ 3.14 · 36 · 36
 - = 4,069.44 square inches
 - Circumference
 - $\approx 3.14 \cdot 72 = 226.08$ inches
- 2. Area
 - ≈ 3.14 · 1.2 · 1.2
 - = 4.52 square meters
 - Circumference
 - $\approx 3.14 \cdot 2.4 = 7.54$ meters
- 3. One round of the can

$$\approx 2 \cdot \frac{22}{7} \cdot 9.8 = 61.6 \text{ cm}$$

- 100 rounds of the can
- $= 61.6 \cdot 100$
- = 6,160 cm = 61.6 m

The length of the piece of wire is 61.6 meters.

4. One revolution

$$\approx \frac{22}{7} \cdot 0.7 = 2.2$$
 meters

$$440 \div 2.2 = 200$$

The wheel makes 200 revolutions if the bicycle travels 440 meters.