\qquad

Lesson 11.2 Area of a Circle

Find the area of each circle. Use $\mathbf{3 . 1 4}$ as an approximation for π.

1.

2.

Find the area of each semicircle. Use $\frac{\mathbf{2 2}}{\mathbf{7}}$ as an approximation for π.
3.

4.

Find the area of each quadrant to the nearest tenth. Use $\mathbf{3 . 1 4}$ as an approximation for π.
5.

6.

Name:
Date:

Solve. Show your work. Use $\frac{\mathbf{2 2}}{\mathbf{7}}$ as an approximation for $\boldsymbol{\pi}$.
7. A park is in the shape of a semicircle. Find the area of the park.

8. The shape of a soap dish is a semicircle. Find the area of the soap dish.

9. A 6 -inch pizza costs $\$ 3.50$. A 12 -inch pizza costs $\$ 11$.
a) How much less is the area of the 6 -inch pizza than the area of the 12 -inch pizza? Express your answer to the nearest hundredth.
b) Which is the better deal? Explain your reasoning.
10. The figure shows a circular fishpond enclosed within a semicircular flowerbed. The diameter of the pond, $\overline{P Q}$, is 42 inches. Find the area of the shaded region.

11. The figure is made up of two identical quadrants and a square. Find the area of the shaded region.

Solve. Show your work. Use $\mathbf{3 . 1 4}$ as an approximation for π.

12. The figure is made up of a semicircle and two identical quadrants.

Point A is the center of the semicircle. Find the area of the figure.

Name:
Date:
13. The figure is made up of a semicircle in a quadrant. Find the area of the shaded region.

18 in.

14. The figure shows a circle and four identical semicircles inside it. Point C is the center of the circle and $\overline{A E}$ is the diameter. If $A E=48$ centimeters, find the area of the shaded region.

15. The figure shows two circles. Points A and B are the centers of the circles. The area of the shaded region is $\frac{2}{7}$ the area of the smaller circle. Find the total area of the unshaded region of the figure.

4. Length of the semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 1.54=2.42 \mathrm{in}$.
Distance around the semicircle
$=2.42+0.77+0.77=3.96$ inches
5. Length of the arc
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 10$
$=15.7 \mathrm{~cm}$
Distance around the quadrant
$=15.7+10+10$
$=35.7$ centimeters
6. Length of the arc
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 21.4$
$=33.598 \mathrm{ft}$
Distance around the quadrant
$=33.598+21.4+21.4$
$=76.398$ feet
7. $2 \cdot \frac{22}{7} \cdot 1.9=11.94$ feet
8. $\frac{22}{7} \cdot 25=78.57$ inches
9. $\frac{22}{7} \cdot 18=56.57$ millimeters
10. $\frac{1}{2} \cdot \frac{22}{7} \cdot 25=39.29 \mathrm{in}$.

Distance around the semicircle
$=39.29+25$
$=64.29$ inches
11. $\frac{1}{4} \cdot 2 \cdot \frac{22}{7} \cdot 11=17.29 \mathrm{~cm}$

Distance around the quadrant
$=17.29+11+11$
$=39.29$ centimeters
12. $\frac{3}{4}$ of the circle
$\approx \frac{3}{4} \cdot 2 \cdot 3.14 \cdot 18$
$=84.78 \mathrm{~cm}$
Distance around the figure
$=84.78+18+18$
$=120.78$ centimeters
13. Length of the arcs of the 4 quadrants
$\approx 2 \cdot 3.14 \cdot 15$
$=94.2 \mathrm{in}$.
Distance around the figure
$=94.2+15+15$
$=124.2$ inches
14. Length of semicircular arc
$\approx \frac{1}{2} \cdot 3.14 \cdot 18=28.26 \mathrm{yd}$
Distance around the shaded region
$=28.26+18 \cdot 3$
$=82.26$ yards
15. Length of the arc of the quadrant
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 20=31.4 \mathrm{~cm}$
Distance around the shaded region
$=31.4+20+20$
$=71.4$ centimeters
16. Length of the 2 semicircular arcs
$\approx \frac{22}{7} \cdot 7=22 \mathrm{in}$.
Distance around the shaded region
$=22+12+12=46$ inches
17. Length of the small semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 140=220 \mathrm{~cm}$
Length of the big semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot(140+35+35)=330 \mathrm{~cm}$
Distance around the shaded region
$=220+330+35+35$
$=620$ centimeters
18. Length of the arc of the 2 quadrants
$\approx \frac{1}{2} \cdot 2 \cdot \frac{22}{7} \cdot 7=22 \mathrm{~cm}$
Distance around the figure
$=22+7+7+2+2$
$=40$ centimeters

Lesson 11.2

1. $3.14 \cdot 20 \cdot 20$
$=1,256$ square centimeters
2. $3.14 \cdot 4 \cdot 4$
$=50.24$ square miles
3. $\frac{1}{2} \cdot \frac{22}{7} \cdot 17.5 \cdot 17.5$
$=481.25$ square feet
4. $\frac{1}{2} \cdot \frac{22}{7} \cdot 56 \cdot 56$
$=4,928$ square meters
5. $\frac{1}{4} \cdot 3.14 \cdot 3.5 \cdot 3.5$
≈ 9.6 square inches
6. $\frac{1}{4} \cdot 3.14 \cdot 14 \cdot 14$
≈ 153.9 square yards
7. $\frac{1}{2} \cdot \frac{22}{7} \cdot 20 \cdot 20$
≈ 628.57 square meters
8. $\frac{1}{2} \cdot \frac{22}{7} \cdot 7 \cdot 7=77$ square centimeters
9. a) Area of 6 -inch pizza:
$\frac{22}{7} \cdot 3 \cdot 3 \approx 28.29$
Area of 12 -inch pizza:
$\frac{22}{7} \cdot 6 \cdot 6 \approx 113.14$
113.14-28.29
$=84.85$ square inches
The area of the 6 -inch pizza is 84.85 square inches less than the area of the 12-inch pizza.
b) Cost of 6-inch pizza per square inch:
$\$ 3.5 \div 28.29 \approx \$ 0.12$
Cost of 12 -inch pizza per square inch:
$\$ 11 \div 113.14 \approx \$ 0.10$
The 12 -inch pizza is a better deal because it costs less per square inch than the 6-inch pizza.
10. Area of the semicircular flowerbed
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 42 \cdot 42=2,772$ in. 2
Area of the circular fishpond
$\approx \frac{22}{7} \cdot 21 \cdot 21=1,386$ in. 2
Area of flowerbed without the pond
$\approx 2,772-1,386$
$=1,386$ square inches
11. Area of the shaded region $=21 \cdot 21=441$ square inches
OR
Area of the quadrant
$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot 21 \cdot 21=346.5$ in. 2
Area of shaded region in the square
$\approx 21 \cdot 21-\frac{1}{4} \cdot \frac{22}{7} \cdot 21 \cdot 21$
$=94.5 \mathrm{in}^{2}$
Total area of the shaded regions
$=346.5+94.5=441$ square inches
12. Radius $=45 \div 3=15 \mathrm{~cm}$

Area of the figure
$\approx 3.14 \cdot 15 \cdot 15$
$=706.5$ square centimeters
13. Area of the quadrant
$\approx \frac{1}{4} \cdot 3.14 \cdot 18 \cdot 18$
$=254.34$ in. 2
Area of the semicircle
$\approx \frac{1}{2} \cdot 3.14 \cdot 9 \cdot 9$
$=127.17$ in. ${ }^{2}$
Area of the shaded region
$=254.34$ - 127.17
$=127.17$ square inches
14. Radius of the circle $=48 \div 2=24 \mathrm{~cm}$
Area of the circle
$\approx 3.14 \cdot 24 \cdot 24$
$=1,808.64 \mathrm{~cm}^{2}$
Radius of each semicircle
$=48 \div 4 \div 2=6 \mathrm{~cm}$
Total area of the 4 semicircles
$=$ area of 2 circles
$\approx 2 \cdot(3.14 \cdot 6 \cdot 6)$
$=226.08 \mathrm{~cm}^{2}$
Area of the shaded region
$=1,808.64-226.08 \mathrm{~cm}^{2}$
$=1,582.56$ square centimeters
15. Area of the bigger circle
$\approx 3.14 \cdot 10 \cdot 10=314 \mathrm{~cm}^{2}$
Area of the smaller circle
$\approx 3.14 \cdot 7 \cdot 7=153.86 \mathrm{~cm}^{2}$
Area of the shaded region
$=\frac{2}{7} \cdot 153.86=43.96 \mathrm{~cm}^{2}$
Area of the unshaded region
$=314+153.86-2 \cdot 43.96 \mathrm{~cm}^{2}$
$=379.94$ square centimeters

Lesson 11.3

1. Area
$\approx 3.14 \cdot 36 \cdot 36$
$=4,069.44$ square inches
Circumference
$\approx 3.14 \cdot 72=226.08$ inches
2. Area
$\approx 3.14 \cdot 1.2 \cdot 1.2$
$=4.52$ square meters
Circumference
$\approx 3.14 \cdot 2.4=7.54$ meters
3. One round of the can
$\approx 2 \cdot \frac{22}{7} \cdot 9.8=61.6 \mathrm{~cm}$
100 rounds of the can
$=61.6 \cdot 100$
$=6,160 \mathrm{~cm}=61.6 \mathrm{~m}$
The length of the piece of wire is 61.6 meters.
4. One revolution
$\approx \frac{22}{7} \cdot 0.7=2.2$ meters
$440 \div 2.2=200$
The wheel makes 200 revolutions if the bicycle travels 440 meters.
